No. of Printed Pages: 7

MCS-012

MCA (REVISED)/BCA (REVISED)

Term-End Examination

June, 2019

MCS-012: COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time: 3 Hours

Maximum Marks: 100

(Weightage 75%)

Note: Question No. 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

1. (a) Perform the following:

- 6
- (i) Add (-35) and (-75) number in an 8bit register using signed 2's complement representation. Also indicate an overflow if any.

(A-7) P. T. O.

- (ii) Convert binary 01001011 into octal and hexadecimal notation.
- (iii) Write BCD equivalent of 256.
- (b) Simplify the following Boolean function in SOP form using K-map: $F (A, B, C, D) = \Sigma (0, 3, 7, 3, 13, 15, 18, 21)$ and draw the logic Magram.
- (c) Given the 8 bit value 10101101 stored in a register, what are microinstructions required in order to:
 - (i) Clear to 0 the first 4 bits
 - (ii) Set to 1 the last 4 bits
 - (iii) Complement the first 4 bits
- (d) Assume R2 register having suitable values to perform the micro-operations. Discuss the importance of flags in a computer system.

(e)	Draw the block diagram of hardwired
	control unit and explain how does it
•	work?- 5
(f)	Explain the use of large register file for
	RISC machines with the help of an
	example.
(g)	Write an 8086 assembly language program
	to add five byte numbers stored in an
•	array. The result should be stored in AX
	register. 100 6
(h)	Why does DMA have priority over the CPU
	when both request a memory transfer of
	data?
(a)	How is execution of an instruction done?
•	Draw the flow chart of the instruction
:	cycle. 5
(b)	What are the key features of Von-
	Neumann Architecture? 5
	•

(A-7) P. T. O.

(c)	Describe	thro	ugh an	exar	nple ho	w does
	two-way	set	associa	tive	cache	mapping
	scheme work.				ϵ	

- (d) Draw an excitation table for RS flip-flop.
- 3. (a) Draw a 4-bit parallel register using D flipflops and explain its operation.
 - (b) Categorize the following 8086 assembly language instructions to the instruction types given below:

Assembly

Instruction Type

Instructions

- (1) Move (i) Data processing instruction
- (2) TRAP (ii) Data transfer instruction

(A-7)

	(3) BRN	(iii)	Privileges			
•			instruction			
	(4) DIV	(iv)	Program control			
	•		instruction			
	(5) STO	RE				
	(6) XOR	d from	S			
(c)	List the	important cl	naracteristics of			
	instruction	et of a basic c	omputer. 4			
(d)	What is the difference between the					
	following operations?					
	(i) Arithmetic shift and logic shift					
	(ii) Logic s	hift and circula	ar shift			
		•	•			
(a)	Suppose the value of the registers R ₁ and					
	R_2 are:		6			
	$R_1 = 1$	1101 0110				
	R. =	1111 1001				

(A-7) P. T. O.

Perform the following operations on R_1 using R_2 :

- (i) Selective Complement
- (ii) Selective Set
- (iii) Selective Clear
- (b) What is a multiplexer? Why is it needed?

 Draw the logic diagram and truth table for a 4 × 1 multiplexer.
- (c) Explain the following 8086 microprocessor addressing modes with the help of an example for each:
 - (i) Indexed
 - (ii) Register Indirect
 - (iii) Direct
- (d) Discuss the use of a device driver. 2
- 5. (a) What are the constraints with MOV instruction of 8086 microprocessor?
 - (b) List all the features of RISC architectures.

6

(A-7)

- (c) Draw a general configuration of microprogrammed control unit and discuss its operation.
 - (d) What is performance degradation in a pipeline? Explain any *two* possible hardware schemes that can be used in an instruction pipeline in order to minimize the performance degradation caused by instruction branching.

MCS-012

10,000